欢迎您访问海南教师资格网! 本站为【学考网】旗下海南教师资格考试民间交流网站,最新教师考试动态请各位考生以海南省教育考试院或当地教育局所示为准。
在线咨询
公众号
交流群
考生交流
合作联系
在线做题
短信提醒
教师资格考试动态提醒
获取验证码

特别提醒:

1.提醒为短信模式,请填写本人正确的手机号码

2.确认预约后,会有专门的客服确认您预约的项 目,请保持通讯畅通

3.如有任何问题,请致电客服热线:
或点击网站首页的在线咨询

教师招聘考试面试考题-说课稿点评之反比例函数

时间:
2020-06-08 16:25:21
作者:
黄老师
阅读:
来源:
海南中小幼儿教师资格考试
  【应试者作答摘录】

  各位评委,大家好!

  今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。我将从如下步骤进行。

  一、说教材

  1.内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。

  2.学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。

  二、说教学目标

  根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:

  1.从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。

  2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。

  三、说教法

  本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。

  四、说学法

  我认为学生将实际问题转化成函数的能力是有限的,所以我借助多媒体辅助教学,指导学生通过类比、转化、直观形象的观察与演示,亲身经历函数模型的转化过程,为学生攻克难点创造条件,同时考虑到本课的重点是反比例函数概念的教学,也考虑到概念教学要从大量实际出发,通过事例帮助完成定义。因此,我采用了“问题式探究法”的教法,利用多媒体设置丰富的问题情境,让学生的思维由问题开始,到问题深化,让学生的思维始终处于积极主动的状态,并随着问题的深入而跳跃。

  五、说教学过程

  (一)创设情境,发现新知

  首先提出问题

  问题1:小明同学用50元钱买学习用品,单价y(元)与数量x(件)之间的关系式是什么?

  【设计意图及教法说明】

  在课开头,我认为以一个简单的数字问题引入,目的是让学生在很快的时间里说出显而易见的答案,便于增强学生学好本课的自信心,使他们能愉快地进行新知的学习。

  问题2:我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,

  (1)你能用含有R的代数式表示I吗?

  (2)利用写出的关系式完成下表。

  R/Ω 20 40 60 80 100

  I/A

  当R越来越大时,I怎样变化?当R越来越小呢?

  (3)变量I是R的函数吗?为什么?

  【设计意图及教法说明】

  因为数学来源于生活,并服务于生活,问题2是一个与物理有关的数学问题,这样设计便于使学生把数学知识和物理知识相联系,增加学科的相通性,另外通过本题的学习,可以让学生在情境中体会变量之间的关系,问题2先让学生独立思考,然后再同桌交流,最后小组讨论并汇报,此问题中的(1)(2)问题比较简单,学生可以独立完成,但对于问题(3),老师要给适当的指导。

  问题2的深化:舞台灯光可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼,这样的效果是通过什么来实现的?

  【设计意图及教法说明】

  学生可以根据问题2以及学过的物理知识来解释这个问题,这样既增强学生学习新知的积极性,又达到了解决问题的目的。

  问题3:京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往广西,汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?

  【设计意图及教法说明】

  问题3是一个行程问题,先让学生独立思考、同桌讨论,最后列出正确的函数关系式,进一步体会函数是刻画变量之间关系的数学模型,为形成反比例函数的概念打基础。

免费领取教资笔试/面试/普通话备考资料> >

教师资格备考指导 立即定制专属备考方案

OR